A Multilevel Approach to the Study of Motor Control and Learning

Second Edition

Debra J. Rose
California State University, Fullerton

Robert W. Christina
University of North Carolina, Greensboro
CONTENTS

Preface xiii

SECTION ONE: MOTOR CONTROL

Chapter 1: Introduction to Motor Control 1
Defining Motor Control 2
Open- and Closed-Loop Motor Control 4
  Open-Loop Motor Control 4
  Use of Open- versus Closed-Loop Motor Control 6
Theories of Motor Control 7
  Reflex Theories 7
  Hierarchical Theories 9
  Dynamical and Ecological Approaches 14
  Does One Theoretical Approach Better Explain How Movements Are Controlled? 19
Characteristics of Human Action 21
  Flexibility 21
  Uniqueness 22
  Consistency and Modifiability 23
  Does One Theory of Motor Control Better Explain the Characteristics of Skilled Actions? 23
The Degrees-of-Freedom Problem 26

Summary 29
Important Terminology 29
Suggested Further Reading 30
Test Your Understanding 30

Chapter 2: Scientific Measurement and Motor Control 31
Psychological Measures 32
  Response Outcome Measures 32
  Response Process Measures 41
Neurological Measures 51
  Intracellular Recordings 52
  Lesions and Ablations 52
  Brain Mapping and Scanning Techniques 53
Chapter 3: Somatosensory Contributions to Action 59

General Properties of Sensory Receptors and Afferent Pathways 60
  Adequate Stimulation 60
  Intensity Coding 61
  Sensory Adaptation 61

The Transmission and Integration of Sensory Input 63

Somatosensation 65
  Cutaneous Receptors 66
  Proprioceptors 67

Transmission of Somatosensory Input 72
  Dorsal Column System 72
  Spinocerebellar Tract 74
  Anterolateral System 74
  Somatosensory Cortex 76

Disorders of the Somatosensory System 77

Application of Theory 79

The Conscious Sensation of Movement 80
  Afferent Sources of Kinesthesia 80

The Conscious Sensation of Muscular Effort 83

Practical Applications 84

The Role of Feedback in Controlling Actions 86
  Knowledge of Body Position 86
  Planning and Modification of Action Plans 86
  Learning or Relearning Movements 87

Errors in Performance 88

Summary 88

Important Terminology 89

Suggested Further Reading 90

Test Your Understanding 90

Practical Activities 91
Chapter 4: Visual and Vestibular System
Contributions to Action 93

Neuromotor Processing of Vision 94
  Reception of Visual Input 94
  Transmission to the Brain 96
  Topographic Organization in the Visual System 97
  The Control of Eye Movements 97
Two Visual Systems? 99
  Two Visual Systems and Motor Control 99
Psychological Studies of Perception and Action 100
  Contrasting Theories of Visual Perception 100
Visual Guidance of Action 103
  Reaching and Grasping 103
  Standing Balance 104
  Locomotion 105
  Jumping from Different Heights 107
  Catching Objects 107
  Hitting Objects 108
  Time-to-Contact Information 108
  Visual Dominance 111
  Role of Vision in Performance of Sport Skills 111
Disorders of the Visual System 113

Vestibular System 114
  Anatomy of the Vestibular System 114
  Peripheral Sensory Reception 116
  Ascending Pathways 117
  Descending Pathways 118
  Vestibular-Visual Interactions 119
  Adaptability of the Vestibular Ocular Reflex 119
  Vestibular Contributions to Equilibrium 120
Disorders of the Vestibular System 121

Summary 123
Important Terminology 124
Suggested Further Reading 125
Test Your Understanding 125
Practical Activities 126
### Theories of Motor Learning 171
- Adams’ Closed-Loop Theory 172
- Schmidt’s Schema Theory 172
- Ecological Theories of Perception and Action 175
- How Does Motor Learning Really Occur? 176

### Stages of Motor Learning 178
- Fitts’ Three Stages of Learning 178
- A Neo-Bernsteinian Perspective 179
- Gentile’s Two-Stage Model 181
- Benefits of the Three Models of Motor Learning 183

### Readiness for Motor Learning 184
- Developmental Qualities 185
- Learning Styles 186
- Motivational Qualities 189

### Summary 190

### Important Terminology 192

### Suggested Further Reading 192

### Test Your Understanding 192

---

### Chapter 7: How Motor Learning Is Studied 194

#### Approaches to the Study of Motor Learning 195
- Traditional Approach 195
- Method versus Problem-Oriented Approach 197
- Doctrine of Disproof Approach 198
- Cooperative Approach between Basic and Applied Research 199

#### Assessing Motor Learning in Acquisition 200
- Performance Curves 200
- Setting a Criterion of Mastery 206
- Over-Learning 207
- Level of Automaticity 207
- Limitations of Assessing Motor Learning in Acquisition 208

#### Assessing Motor Learning in Post-Acquisition 209
- Retention Tests 209
- Maintaining the Learning–Retention Distinction 210
- Transfer Tests 210
- Development of a Knowledge Base 217
Contents

Measuring Learning-Related Changes in Perception and Cognition  218
  Expert–Novice Comparisons  212
  Visual Occlusion Techniques  214
  Eye Movement Recordings  215
  Pattern Recognition and Memory Recall Tests  215
  Development of a Knowledge Base  217

Measuring Learning-Related Changes in the Dynamics of Action  218
  Measures of Metabolic and Mechanical Efficacy  218

Identifying the Learning-Related Changes in Performance  219

Summary  220

Important Terminology  221

Suggested Further Reading  221

Test Your Understanding  221

Chapter 8: Setting the Stage for Motor Learning  223

Motivating People to Learn Motor Skills  224
  Goal Setting  225
  Praise and Criticism  226
  Success and Failure  227
  Self-Esteem  227
  Competition and Cooperation  228

Introducing and Explaining Movement Skills  228
  Setting the Stage for the Introduction  228
  Delivering the Introduction  229
  Delivering the Explanation  229
  Select the Best Words to Use in the Explanation  229
  Where to Direct the Learners’ Focus of Attention  230
  Relate What Is Being Taught to the Learners’ Background  231

Demonstrating the Skill to Be Learned  233
  Variables That Influence the Effectiveness of Modeling  234
  Evaluating the Effectiveness of a Model  242
  Guidelines for Using Modeling  243

Theoretical Explanations of the Modeling Effect  244
  Social Learning Theory  244
  Direct Perception Approach  245
### Contents

Discovery Learning 245
- Applying the Principles of Discovery Learning 247

Summary 248
Important Terminology 249
Suggested Further Reading 250
Test Your Understanding 250

**Chapter 9: Organizing the Practice Environment** 252

Amount of Practice 253
- Level of Original Learning 254
- Level of Over-Learning 255

Structuring the Practice Session 256
- Specificity of Practice 256
- Variability of Practice 262

Organizing the Practice Schedule 264
- Introducing Interference 264
- Influencing Factors 265

Theoretical Accounts of the Contextual Interference Effect 270
- Elaboration View 271
- Action-Plan Reconstruction View 271

Spacing/Distribution of Practice 272

Techniques for Enhancing the Effectiveness of Practice 274
- Guidance Techniques 274
- Whole-Task versus Part-Task Practice Strategies 275
- Part-Task Practice Methods 277
- Attentional Cuing and Whole Practice 277

Mental Practice 278
- Mental Practice Conditions 279
- Variables Limiting Our Understanding of Mental Practice Effects 282
- Physiological Basis of Mental Practice 284

Summary 286
Important Terminology 288
Suggested Further Reading 288
Test Your Understanding 289
Practical Activities 290
Chapter 10: Augmented Feedback and Motor Learning  291

Functions of Feedback in Motor Learning  293
- Feedback as Information to Correct Performance Errors  293
- Feedback as Positive Reinforcement to Strengthen Correct Performance  294
- Feedback as Negative Reinforcement to Strengthen Correct Performance  295
- Feedback as Punishment to Suppress Errors  296
- Feedback as Motivation for Motor Learning  296

Form of the Feedback  297
- Kinematic and Kinetic Visual Displays  298
- Videotape Feedback  299
- Augmented Sensory Feedback: Biofeedback  301

Precision of Augmented Feedback  303

Frequency of Augmented Feedback  303
- Fading-Frequency Schedules of Knowledge of Results  305
- Bandwidth Knowledge of Results  305
- Reversed Bandwith Knowledge of Results  307
- Summary Knowledge of Results  307
- Average Knowledge of Results  309
- Self-Regulated (Controlled) Augmented Feedback Schedules  312

Theoretical Explanations of the Frequency Effect  313
- Guidance Hypothesis  313
- Consistency Hypothesis  313

The Timing of Knowledge of Results  314

Summary  316

Important Terminology  318

Suggested Further Reading  319

Test Your Understanding  319

Chapter 11: Memory and Forgetting  321

Contemporary Concepts of Memory  322
- Atkinson and Shiffrin's Multistore Model  323
- Levels-of-Processing Framework  325
- Neurobiology of Memory  326
Types of Memory 328
  Short-Term and Long-Term Memory 328
  Declarative and Procedural Memory 328
  The Relationship Between Learning and Memory 329
How Memory and Forgetting Are Studied 329
  What Retention Test Performance Tells Us 330
  Example of How the Retention of Motor Learning Is Studied 332
  Controlling for Variables That Produce Contaminating Effects 334
  Retention Test Measures 338
Theories of Forgetting 341
  Trace Decay Theory 341
  Interference Theory 342
  Retrieval Theory 344
  Which Theory Is Correct? 345
Factors That Influence Memory Skill 345
  Characteristics of the Movement Skill 346
  The Level of Original Learning 350
  The Learner 350
Disorders of Memory 352
Summary 353
Important Terminology 354
Suggested Further Reading 355
Test Your Understanding 355

Chapter 12: Transfer of Motor Learning 357
Transfer of Motor Learning Depends on Similarity 358
  Direction and Amount of Transfer 359
  Extent of Transfer 362
  Additional Factors Influencing Transfer 367
Transfer of General Factors 370
  Transfer of Principles 370
  Learning to Learn 371
  Two-Factor Theory 371
Types of Transfer 372
  Vertical Transfer 372
  Lateral Transfer 374
  Near and Far Transfer 379
The second edition of a *Multilevel Approach to Motor Control and Learning* expands upon the goal of the first edition: to provide a textbook for upper division undergraduate and entry-level graduate students in kinesiology that addresses motor control and motor learning concepts in the same text. What continues to differentiate this text from others that address one or both of these important subject areas is its multilevel approach. The content contained in this text is not only presented at a behavioral level of analysis but at a neurological level of analysis also. The significantly expanded content at both levels of analysis in the second edition will be particularly appropriate for students interested in pursuing postgraduate studies in health care professions such as physical therapy and/or professional careers in rehabilitation settings.

The book continues to be divided into two sections: Motor Control and Motor Learning. The first section—Chapters 1 through 5—presents an in-depth discussion of the prominent motor control theories and the scientific evidence in support of each theory and/or theoretical perspective. The underlying mechanisms that contribute to motor control are explored at both a behavioral and neurological level of analysis. At the completion of this section, the reader should have acquired a strong understanding of the behavioral and neurological processes that are involved in the planning and executing of many different movement skills.

The second section—Chapters 6 through 12—focuses on the theoretical concepts that underlie the acquisition, retention, and, in some cases, forgetting of learned movement skills. The multilevel theoretical approach is followed in this section also, as the behavioral changes associated with the learning of movement skills are once again linked to the underlying neurological mechanisms. This section of the book also emphasizes practical application as issues related to how motor skills should be introduced and practiced for optimal retention and transfer are discussed.

**New to This Edition**

1. A coauthor. It is a privilege and honor to be writing this second edition with my mentor, Dr. Robert Christina. Dr. Christina brings a wealth of knowledge and history of the field of motor control and learning that adds a richness and depth to the content presented in a number of chapters, but most notably the motor learning section of the book.

2. A new chapter that addresses the issue of the transfer of learning.

3. Major restructuring and reordering of chapters. The reordering of chapters provides a more cohesive discussion of the subject matter and was based on reviewer feedback and our own critical review of the first edition.

4. Expanded and updated content in all chapters. There is a more comprehensive discussion of the major theoretical approaches that have guided the research conducted in the areas of motor control and learning.
5. Addition of practical activities at the end of selected chapters. These provide the instructor with opportunities to engage the students in classroom activities that add a practical dimension to the theoretical content presented in the book.

6. Addition of more highlight boxes. Each addresses an important theoretical concept or controversy, a classic experiment, or examples of how motor control and learning theory has been applied to practice.

**Pedagogical Features**

The pedagogical features in the second edition have been expanded to include practical activities at the end of selected chapters, additional summary boxes that emphasize important points presented in the text, and new highlights in every chapter that address pivotal research findings from sport and clinical settings, important theoretical concepts, or practical applications of research.

**Acknowledgements**

This second edition would not have come to fruition without the significant contributions and support of my coauthor, Bob Christina, and the encouragement of so many of my colleagues in motor control and learning who adopted the first edition of this textbook over six years ago and kept asking when the second edition was going to be published. Of course, our book editors at Benjamin-Cummings kept asking us the same question, as we missed our submission deadlines on multiple occasions. Fortunately for us, Christina Pierson and Deirdre Espinoza both recognized that writing a textbook, even a second edition, is a serious undertaking and one that cannot be rushed if it is to be a product of which everyone can be proud. I would also personally like to thank my faculty colleagues in motor control and learning at Cal State-Fullerton, David Chen and Michelle Barr, who provided me with excellent feedback on the first edition based on their own personal teaching experiences using the book. Finally, I wish to thank each and every undergraduate and graduate student who I have taught in the six years since this book was first published. They have been my very best critics as the target audience for whom this book is intended. I hope that this second edition addresses many of their criticisms of the first edition.

**Reviewers**

Laurie Lundy-Ekman, Pacific University; Jeffrey M. Haddad, University of Massachusetts–Amherst; Rachel D. Seidler, University of Michigan; Amy Haufler, University of Maryland; Shane Frehlich, California State University–Northridge; Richard Stratton, Virginia Tech; Steven J. Radlo, Western Illinois University; Ann Gentile, Teachers College, Columbia University; Daniel Corcos, University of Illinois at Chicago; Qin Lai, Wayne State University; Lori Ploutz-Snyder, Syracuse University; Gabriele Wulf, University of Nevada–Las Vegas.
What is the multilevel approach to the study of motor learning and control? A behavior level analysis adopting an information-processing approach. The environment is an important factor in considering movement. Scientific measurements of motor performance and learning, changes in perception and cognition changes in performance. Measuring learning-related changes in perception and cognition.