Hydraulic Failure Analysis: Fluids, Components, and System Effects

George E. Totten, David K. Wills, and Dierk G. Feldmann, editors

ASTM Stock Number: STP1339
Foreword

This publication, *Hydraulic Failure Analysis: Fluids, Components, and System Effects*, contains papers presented at the symposium of the same name held in Reno, Nevada, on 5–6 December 1999. The symposium was sponsored by Committee D-2 on Petroleum Products and Lubricants. The symposium co-chairmen were George E. Totten, Union Carbide Corporation, David K. Wills, Sauer-Danfoss, and Dierk G. Feldmann, Technical University Hamburg-Harburg.
Contents

Overview ix

SESSION I: THEORY, MECHANISM, AND SIMULATION

Mechanisms of Abrasive Wear in Lubricated Contacts—J. A. Williams and A. M. Hyncica 13

Lubrication Characteristics on Sliding Surfaces in a Piston Pump and Motor During Running-In Tests—K. Tanaka, K. Kyogoku, and T. Nakahara 41

Elastic-Plastic Finite Element Stress Analysis of Two-Dimensional Rolling Contact—Y. Jiang, J. Chang, and B. Xu 59

Development of a New Application-Related Test Procedure for Mechanical Testing of Hydraulic Fluids—D. G. Feldmann and M. Kessler 75

Hydraulic Gear Pump Failure Analysis and Tribology Simulation—L. D. Wedeven and R. Bourdouous 105

SESSION II: FAILURE ANALYSIS - PART I

Root Cause Analysis to Identify Hydraulic Failure Modes—J. Reichel and M. Wahl 137

Failure Analysis of the Hydraulic Drive System in a Storm Surge Barrier—M. Flucks 150

Analysis of Failure Modes of a Military Hydraulic Fluid: MIL-H-46170—R. B. Mowery and E. M. Purdy 167
SESSION III-A: FAILURE ANALYSIS - PART II

Wear Particle Analysis—J. POLEY

Problems and Possibilities with Bottle Sampling for Assessment of Particle Concentration—G. C. SVEDBERG AND K. SUNDBALL

Wear and Wear Debris in a Changing World—B. J. ROYLANCE

Advanced Strategies for the Monitoring and Control of Water Contamination in Oil Hydraulic Fluids—D. D. TROYER

Advancements in Fluid Analysis Technologies and Strategies for Hydraulic System Condition-Based Maintenance—J. C. FITCH

Hydraulic Pump Contaminant Wear—R. K. TESSMANN AND I. T. HONG

Piston Pump Failures in Various Type Hydraulic Fluids—S. OHKAWA, A. KONISHI, H. HATANO, AND D. VOSS

The Influence of Surface Topography and Environment on the Fatigue Life of a Hydraulic Motor—W. SCOTT

TRIZ-Based Root Cause Failure Analysis for Hydraulic Systems—D. L. MANN AND E. J. HUGHES

SESSION IV-A: MATERIALS

The Surface Behavior of Metallic Materials During the Incubation Period of Cavitation Erosion—A. YABUKI, K. NOISHIKI, K. KOMORI, AND M. MATSUMURA

Failure Mechanism of a Hydraulic Log Piston and Slipper Assembly—J. T. SIKES

Development of Pseudoelastic TiNi Tribo Materials—D. Y. LI

Research of Suitable Material Pairs for Applications Operating with High Water-Based Fluids—R. OBEREM AND H. MURRENHOFF

Ceramic Parts for Hydrostatic Pumps and Motors—D. G. FELDMANN
CONTENTS

PVD-Coatings-Applications in Fluid Power Technology—D. VAN BEBBER AND
H. MURRENHOFF 427

Improving Tribological Performance of Mechanical Components by Laser Surface
Texturing—J. ETISON, G. HALPERIN, AND G. RYK 441

SESSION III-B: COMPONENTS—SEALS, VALVES, AND ROLLING ELEMENT BEARINGS

An Investigation of Fundamental Blistering Phenomena in Rotary Lip Sealing—
F. SCHULZ, V. M. WOLLESEN, AND M. VÖTTER 451

Influence of Lubrication on Wear and Friction on O-Rings in Contact with Yellow
Metal—M. VÖTTER AND O. SCHULTZ 462

Hydraulic Valve Problems Caused by Oil Oxidation Products—A. SASAKI 474

Rust Inhibitor Contamination-Related Problems in Military Aircraft Hydraulic
B. F. SCHREIBER 489

Extending Rolling Element Bearing Life in Hydraulic Systems with Water-Based
Fluids-The Grease Lubrication Option—G. W. POLL 500

SESSION IV-B: FLUIDS

The Importance of Shear Stability in Multigraded Hydraulic Fluids—
C. W. HYNDMAN, B. G. Kinker, AND D. G. PLACEK 523

Corrosive Wear Behavior of 304 Stainless Steel and its Variation with Alloyed
Oxygen-Active Element Yttrium—T. ZHANG AND D. Y. LI 535

A Study of the Mechanism for Beneficial Effects of Yttrium Additive in Lubricant
on Corrosive Wear and Friction of Metals—R. LIU AND D. Y. LI 549

The Effect of Oil Type on Wear in Fluid Power Components—T. KOIVULA,
R. KARJALAINEN, E. ELLMAN, AND M. VILENIUS 563

Recent Experiences with Ester Based Fluids in Qualification Tests—D. G. FELDMANN
AND M. KESSLER 575
Overview

Problems in hydraulic systems associated with hydraulic fluids have been an important area of investigation for many years. Of equal importance is the mutually dependent interaction of hydraulic fluids with component design, component metallurgy, and the design of the hydraulic system itself. Investigation related to these important areas include the following:

- The effect of fluid chemistry on component failure as the result of oxidation, wear debris, viscosity loss, generation of corrosion by-products, and yellow metal wear.
- Metallurgy of the material, including material pair effects and physical properties.
- The effect of surface finish.
- Modeling wear mechanisms as a function of material pair contact loading, speed, and other factors.
- Dynamic versus static wear.
- Wear mechanisms including rolling contact fatigue, cavitation, lubrication failure, abrasive wear, and others, in addition to combinations of these mechanisms.
- Methods of failure analysis focusing on strategies to identify root causes of failure.
- Hydraulic component design and metallurgy of bearings, gears, slippers, and end-plates.

Since there are relatively few, if any, books published that provide a comprehensive overview of these issues, an International Symposium on Hydraulic Failure Analysis, Fluids, Components and System Effects was held in Reno, Nevada on December 5–6, 1999. The objective of this conference was to address these issues and to provide an insight into new technologies that are being developed to address hydraulic wear and failure problems.

The first paper in the first section of this book: Theory, Mechanism, and Simulation provides a thorough overview of the importance of tribological design. Many hydraulic wear and failure problems could be eliminated if appropriate design principles were employed. The remaining papers in this section, taken together, provide the reader with a thorough overview of fundamental principles involved in hydraulic lubrication and wear and set the stage for the wide range of topics discussed in the remainder of the book.

The second section of the book, Failure Analysis, provides a wide range of discussion on numerous topics related to hydraulic failure analysis. These include: methodologies for root cause analysis to identify hydraulic wear, importance and different applications of wear particle analysis to identify the sources of hydraulic component failure, and a failure catalog of hydraulic pump and rolling element bearing wear provided by the examples given in the papers comprising this section.
The third section of this book, Materials, provides an overview of significant research underway to identify superior materials for hydraulic pump and component design. The areas of research include: effect of material selection on cavitation erosion, surface engineering to improve material properties, and surface texturing.

Hydraulic wear and failure is not limited to hydraulic pumps and motors. The fourth section, Components—Seals, Valves and Rolling Element Bearings, addresses the effects of various wear, selected failure mechanisms of hydraulic seals, and yellow metal wear.

The last section of the book is Fluids. The papers provided in this section discuss the effects of fluid shear stability, additives, and bio-oils on hydraulic pump wear.

The information provided in this book make it an excellent resource for the hydraulic design engineer and maintenance engineer to properly design, maintain, and troubleshoot a hydraulic system. Additionally, the tests and recommendations made by the speakers at this conference will be carefully analyzed within the ASTM D.02N subcommittee to determine their applicability for the development of new ASTM standards and guides.

George E. Totten
Union Carbide Corporation
Tarrytown, NY, USA
Symposium Co-Chairman and Editor

David K. Wills
Sauer-Danfoss
Ames, IA, USA
Symposium Co-Chairman and Editor

Dierk G. Feldmann
Technical University of Hamburg-Harburg
Hamburg, Germany
Symposium Co-Chairman and Editor
Engineering Failure Analysis publishes research papers describing the analysis of engineering failures and related studies. Papers relating to the... Due to migration of article submission systems, please check the status of your submitted manuscript in the relevant system below: Check the status of your submitted manuscript in EVISE. Check the status of your submitted manuscript in EES.